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STATEMENT OF PROBLEM. Numerical simulation of fluid dynamics allows for
improved prediction and design of natural and engineered systems such as those
involving water, oil, and blood. Such systems often involve dynamics that occur
on disparate length and time scales due to variations in inertial and viscous
forces. In order to numerically simulate these dynamics, complex mathematical
modeling, and scalable computational methods are required. The principal goal
of this project is to develop a scalable numerical framework to be used in
conducting fluid flow simulations involving convection and diffusion. We are
particularly interested in using these computational methods to investigate fluid
behavior near critical points of multiphase flows in the presence of convection as
part of the metrology mission at NIST.

BACKGROUND AND RELEVANCE TO PREVIOUS WORK. Advancements in
numerical simulation have led to large-scale fluid simulations that assist in
characterizing flow behavior due to changes in physical parameters. With
improved mathematical modeling and computational methods, we are now able
to attack more challenging fluid problems such as those involving strong
convection. In convective flows, inertial and viscous forces occur on disparate
scales causing sharp flow features. These sharp features require fine numerical
grid resolution and cause the governing systems to be poorly conditioned. As
convection increases these properties make solving the discrete systems
exceedingly challenging. 

Conventional methods avoid solving the non-symmetric convection-diffusion
system by applying complex splitting schemes that separate the governing
system into convective (inertial) and diffusive (viscous) components (Maday et al.
1990). After making this splitting, a combination of explicit and implicit time
stepping is used to advance the equations forward in time. For these semi-
implicit algorithms to be stable, the maximum time step must be bounded by the
minimum grid space divided by the maximum velocity. This bound causes the
time step to become quite small when simulating convective flows, due to both
the large velocities and the fine grid resolution required to capture flow
information accurately. 

Recent advancements in multigrid methods and multilevel domain decomposition
methods for preconditioning non-symmetric systems have made fully implicit
methods possible in large-scale convection-diffusion fluid simulation (Gropp et al.
2000). These methods do not rely on splitting or time stepping to accelerate
convergence, but instead use fast advection-diffusion solvers via effective
preconditioners. Often these methods involve factorizations of large system
matrices that are costly to store and difficult to parallelize. One of my research
interests and areas of experience is in developing cheap, scalable



preconditioners by way of matrix-free element-based discretizations (Elman &
Lott 2008). 

Numerical discretizations are chosen to ensure that an accurate and stable
numerical solution of the governing equations can be obtained efficiently.
Element-based discretizations divide the computational domain into non-
overlapping subdomains (elements), and represent the variables on each
element via a polynomial basis.  Accuracy of solutions can be improved by
reducing element sizes (h-refinement) and also by increasing the order of the
polynomial basis (p-refinement). Modifying the discretization based on local flow
complexity yields a more accurate solution without a globally refined grid, thus
achieving significant savings. To improve the accuracy of element-based
discretizations, the spectral element method was developed by Patera in 1984.
This method uses a high order Legendre polynomial basis on each element to
achieve spectral accuracy while maintaining the geometric flexibility of the finite
element method (Patera 1984). Thus, spectral element methods are particularly
well suited for modifying the discretization locally without global refinement
(Mavriplis 1994). Compared to low order methods, spectral methods require
about half as many degrees of freedom in each spatial dimension to accurately
resolve a flow (Boyd 2001). Thus, by coupling a high order method with an
adaptive mesh refinement scheme, one may achieve the desired accuracy with
the least amount of computation (Karniadakis & Sherwin 1999). In addition to the
accuracy and efficiency on scalar computers, high order element-based
discretizations scale well in parallel computing environments due to the large
volume to surface area ratio of nodes on each element that minimizes
communication needed between elements and groups of elements (Tufo &
Fischer 1999).

The choice of numerical discretization determines the structure of the resulting
linear system of equations. High-order element-based discretizations, such as
the spectral element method, produce large sparse matrices with dense sub-
blocks. These dense blocks represent a single element in the sparse system and
can be described via tensor products of associated one-dimensional phenomena.
This local tensor product formulation, together with a gather-scatter operation
that couples elemental interfaces allows for a scalable computationally efficient
matrix-free formulation (Deville et al. 2002). 

GENERAL METHODOLOGY/PROCEEDURES. Developing fast algorithms to
solve large sparse non-symmetric systems arising in fluid simulation is a major
topic of scientific computation research (Elman 2001). The number of iterations
required for these methods to converge is proportional to the number of
eigenvalue clusters of the discrete system. Thus preconditioning techniques
aimed at cheaply clustering the eigenvalues of such systems are needed (Elman
et al. 2005). 

We are interested in developing scalable numerical methods for convective flow



simulations where variations in fluid viscosity, and small density variations
governed by the Boussinesq approximation may occur. There are two difficulties
in developing solvers for this regime that we plan to attack via preconditioning.
First, in elliptic equations, information needs to be propagated throughout the
computational domain instantaneously. We intend on using a multilevel
preconditoner with a fast parallel coarse grid solver such as one based on sparse
factorization (Tufo & Fischer 1997) to communicate flow information quickly
between groups of elements. This method has proven to scale well over 10,000
processors for similar elliptic problems in Navier-Stokes fluid simulations. The
second obstacle is proper treatment of elemental interfaces where physical
parameters differ. We will investigate the use of Neumann-Neumann domain
decomposition preconditioners (Toselli & Widlund 2005), which are particularly
well suited for changes in physical models. We will also consider adaptive
iterative substructuring methods based on local flow characteristics; such
methods are known to improve the stability of the system by eliminating spurious
internal boundary layers (Quarteroni & Valli 1999).

An element-based descretization will allow for different physical models to be
used to govern the behavior of the fluid in each element. This is particularly of
interest in multiphase flows (Yotov 2001). We intend to parallelize the method
using a geometry-free direct stiffness summation (Deville et al. 2002). The
methods we develop will serve as scalable preconditioners to accelerate the
convergence of Implicit Matrix-Free Newton-Krylov-Domain Decomposition
Methods (Gropp et al. 2000). This will allow for efficient simulation of steady and
time-dependent flows. We hope to use these preconditioners to improve
convergence and scalability of linear stability analysis in convective flows (Cliffe
et al. 1994).

EXPECTED RESULTS, SIGNIFICANCE & APPLICATION. We will develop and
use efficient and scalable matrix-free element-based computational approaches
to simulate a diverse set of complex fluid systems. We expect these numerical
solvers will improve efficiency of large-scale convective flow simulations, to allow
for scalable high-resolution investigations of flow stability, phase transitions and
critical points of convective flows. These techniques in computational fluid
dynamics will be developed in the Mathematical and Computational Sciences
Division at NIST, and will have potential application to the areas in which fluid
dynamics plays an important role in NIST's metrology mission. Such applications
include stability analysis of multiphase fluid flows (Anderson et al. 2000 & 2002,
Glicksman et al. 1986), reliability simulations of buildings in the presence of wind
(Simiu & Scanlan 1996) and of deep-water platforms (Simiu 1993), as well as
simulations used to determine the affect of fires in large buildings (McGrattan et
al. 2005). 
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